🚯 primaDIRECT 🔤

Article	Reactions
SL-9130	1 ml, 100 rxn x 20µl
SL-9130-5ML	5x 1 ml, 500 rxn x 20µl
SL-9130-10ML	10x 1 ml, 1000 rxn x 20µl
SL-9130-20ML	20x 1 ml, 2000 rxn x 20µl
SL-9130-50ML	50x 1 ml, 5000 rxn x 20µl

Storage Conditions

Long-Term Storage Master Mix at -20 °C

Short-Term Storage Master Mix at 4 °C

Ultra-Fast Direct-PCR

DESCRIPTION

The **primaDIRECT** 2x PCR Master Mix enables direct PCR for fast and reliable genotyping and other standard PCR applications.

In combination with our primaDIRECT High Performance Lysis Buffer (SL-9102), **samples of various origin** (tissue, cells, mouse tails, plant pieces) are lysed within 15 minutes using our proprietary buffer **without the need of** column- or magnetic-based **extraction procedures**.

This 2x PCR Master Mix does not contain loading dye.

FURTHER INFORMATION

For more information, please visit our website

https://www.steinbrenner-laborsysteme.de

SAMPLE LYSIS (NOT INLCUDED) & PCR WORKFLOW

(i) BEFORE YOU START

The High Performance Lysis Buffer is not included and can be obtained seperately (SL-9102-20ML).

If you use your own lysis buffer system, please continue with step 2.

STEP 1: SAMPLE LYSIS

- 1. Fill 50 100 mg of your sample in to a 1.5 mL reaction tube
 - 1. If using cells, fill 10³ 10⁶ cells in to a tube, spin it down at max speed and remove the supernatant mediuam
- 2. Add 50-200 µl RTL buffer
- 3. Incubate at 56°C for 15-30 minutes
- 4. Incubate at 95 °C for 3-20 minutes to stop the enzymatic reactions
- 5. **Optional:** Spin down your sample and transfer the supernatant to a fresh 1.5 mL tube recommended for long-term storage
- 6. Place your sample on ice while preparing the PCR reaction
- 7. Add 2 μ l of your lysed sample to the PCR reaction mix.

(i) LYSIS OF SAMPLE MATERIAL

The lysis will not completely degrade the sample - which is absolutely fine and does not have any influence on the PCR.

You can lyse various types of sample material such as cells, animal tissue, plant leaves, mouse ears or mouse tails.

In general, use as little sample material for lysis as possible to reduce the amount of PCR inhibitors present in the reaction mixture.

STEP 2: PIPETTE PCR REACTION MIXTURE

Components	20 µl Reaction	Final Concentration
2x primaDIRECT Master Mix	10 µl	1x
Forward Primer	variable (e.g. 2 µl)	200 - 400 nM
Reverse Primer	variable (e.g. 2 µl)	200 - 400 nM
Lysed Sample	1-2 µl	-
Sterile Water	adjust to 20 µl	

STEP 3: RUN PCR

Step	Time	Temperature
Initial Denaturation	2 minutes	95 ℃
35 - 40 cycles		
Denaturation	5 seconds	95 ℃
Annealing	10 seconds	55 ℃ - 68 ℃
Extension	variable, depends on fragment length 5 - 20 seconds per 1 kb fragment length	72 °C

Please see pages 5 & 6 for faster PCR protocols

STEP 4: VISUALIZE ON GEL

Transfer 20 μl to the agarose gel - $loading \, dye$ is required.

This **primaDIRECT** 2x Master Mix does not contain a loading dye. Additional loading dye is required for gel visualization.

GRAPHICAL WORKFLOW

STANDARD GENOTYPING PROTOCOL

(i) BEFORE YOU START

- > After thawing, please **invert the Master Mix tube 6-8 times.**
- **Do not vortex** the Master Mix to prevent damage of the enzyme.

i NOTE

> Cycling conditions highly depend on the primer, probe, amplicon and input material and thus might need adjustments.

However, standard cycling conditions can be applied for the majority of qPCR assays out-of-the box.

3-Step Protocol

Step	Time	Temperature
Initial Denaturation	1-3 minutes	92 ℃ - 95 ℃
25- 40 cycles		
Denaturation	5 - 10 seconds	92 °C - 95 °C
Annealing	5 seconds	60 °C - depending on primer
Extension	20 - 30 seconds	72 °C

2-Step Protocol

Step	Time	Temperature
Initial Denaturation	1-3 minutes	92 ℃ - 95 ℃
25- 40 cycles		
Denaturation5 seconds92 °C - 95 °C		
Annealing/Extension Combined	20 - 40 seconds	60 °C - depending on primer

ULTRA-FAST GENOTYPING PROTOCOL

i BEFORE YOU START After thawing, please invert the Master Mix tube 6-8 times. Do not vortex the Master Mix to prevent damage of the enzyme. i NOTE Ultra-fast Cycling conditions highly depend on the ramping rate of you

Ultra-fast Cycling conditions **highly depend on the ramping rate of your PCR cycler, primer, amplicon and input material** and thus might need adjustments.

Ultra-fast cycling conditions can be applied for the majority of PCR assays out-of-the box, provided that your primer/probe sets do not show unspecific binding.

3-Step Protocol

Step	Time	Temperature
Initial Denaturation	60 seconds	92 ℃ - 95 ℃
25- 40 cycles		
Denaturation	1-5 seconds	92 ℃ - 95 ℃
Annealing	1-5 seconds	60 °C - depending on primer
Extension	5 seconds	72 <i>°</i> C

2-Step Protocol

Step	Time	Temperature
Initial Denaturation	60 seconds	92 °C - 95 °C
25- 40 cycles		
Denaturation1 second92 °C - 95 °C		92 °C - 95 °C
Annealing/Extension Combined	5-10 seconds	60 °C - depending on primer